Automatically and Quickly Planning Platform and Route of Trains in Railway Stations

Peter Sels1,2,3, Thijs Dewilde1, Dirk Cattrysse1, Pieter Vansteenwegen1

1KU Leuven, Leuven Mobility Research Centre, CIB, Celestijnenlaan 300, 3001 Leuven, Belgium

2Logically Yours BVBA, Plankenbergstraat 112 bus L7, 2100 Antwerp, Belgium
e-mail: sels.peter@gmail.com, corresponding author

3Infrabel, Traffic Management & Services, Fonsnylaan 13, 1060 Brussels, Belgium

March 23, 2015
Table of Contents

1 Business Problem
2 Model
 - Objective function
 - Variability
 - Definitions
 - Constraints
3 Software Implementation
 - User Interface
 - Solver running times
4 Results
 - Antwerp-Central Original
 - Antwerp-Central Optimised, Non-Periodic
 - Antwerp-Central Optimised, Periodic
 - Antwerp-Central Both, Non-Periodic
 - Ghent Sint-Pieters Original
 - Ghent Sint-Pieters Optimised, Non-Periodic
 - Ghent Sint-Pieters Both, Non-Periodic
 - Comparative Overview
5 Conclusions & Future Work
Automatically and Quickly Planning Platform and Route of Trains in Railway Stations

Business Problem

Task

Belgian Infrastructure Management Company: Infrabel:

"Train Platforming Problem (TPP): platform and route as many trains as possible"

Objectives:

no conflicts in planning in stations, check robustness

Fixed:

infrastructure, train lines, halting pattern, arrival & departure times

Specifics:

- one busy day, morning peak hours, periodic/non-periodic
- (check current platforming +) create new ('optimised') one
Platforming = Mapping Trains on Infrastructure
In objective function:

- Minimize penalties
 - of assigning to fictive a platform and
 - of moving assignment from preferred (real) to non-preferred (real) platforms,

for both initial O_{INI} and for supplementary O_{SUP} train sets

$$g(op_o,p) = \sum_{o \in O_{INI}} CF_{INI} \cdot f_o + CR_{INI} \cdot cr_o$$
$$+ \sum_{o \in O_{SUP}} CF_{SUP} \cdot f_o + CR_{SUP} \cdot cr_o. \tag{1}$$

where

$$\forall o \in O : f_o \equiv (o2p_o,p = pFICT)$$
$$\forall o \in O : cr_o \equiv (o2p_o,p \neq pORIG_o)$$

- uses fictive platform at a higher cost than real platform
- conservative optimisation $(CF_{INI}, CF_{SUP}, CR_{INI}, CR_{SUP}) = (8, 4, 2, 1)$
- progressive optimisation $(CF_{INI}, CF_{SUP}, CR_{INI}, CR_{SUP}) = (1, 1, 0, 0)$
Not in objective function:

- weighting of trains by importance (e.g. #passengers)
- important (e.g. #passengers) transfer concerns, placing two trains close together
- robustness against delays
Definitions: Movement & Occupation

Movement Definition:
- Train ‘IN/OUT movement’ specifies:
 - IN/OUT line
 - platform arrival time
 - platform departure time
- IN route: connects IN line to platform,
- OUT route: connects platform to OUT line.

Occupation Definition:
- platform ‘occupation’ specifies (bundles):
 - (list of) IN movement(s)
 - (list of) OUT movement(s)
- e.g.: 1 IN movement, 2 OUT movements = train split
- e.g.: 2 IN movements, 1 OUT movement = train merge
In / Not In Variability

In Variability:
- per occupation
 - one platform choice
- per movement
 - one route choice
 - (indirectly) one platform choice

Not in Variability:
- per line-platform combination: only 1 *default* routing allowed for now
- only fixed platform arrival/departure times
Automatic and Quickly Planning Platform and Route of Trains in Railway Stations

Model

Constraints

Constraints Requiring total Assignment

Per-Movement, Per-Occupation and Compatibility Constraints:

- For each occupation, exactly one platform has to be chosen:
 \[\forall o \in O : \sum_{p \in P} op_{o,p} = 1 \] (2)

- For each movement, exactly one route has to be chosen:
 \[\forall o \in O : \forall m \in M_o : \sum_{r \in R} mr_{o,m,r} = 1 \] (3)

- All movements in 1 occupation need to come together on 1 platform track
 \[\forall o \in O : \forall m \in M_o : mr_{o,m,r} \implies op_{m2o_m,r2p_r} \] (4)

- Via \(m2o_m\) function, movement-occupation membership is respected
- Via \(r2p_r\) function, route-platform connectivity is respected
Inter-Occupation Constraints:

- no 2 extended occupations use *equal* platform tracks at any time

\[
\forall \ o_0 \prec o_1 : \forall p_0 = p_1 (p_0, p_1) \in (P_{o_0}, P_{o_1}) :
\]

\[
o_{o_0, p_0} \land o_{o_1, p_1} \implies osep_{o_0, o_1}
\]

(5)

Inter-Movement Constraints:

- no 2 extended movements use *dependent* (equal or crossing) routings at any time

\[
\forall \ m_0 \prec m_1 : \forall dep_{r_0, r_1} (r_0, r_1) \in (R_{m_0}, R_{m_1}) :
\]

\[
m_{r_{o_0, m_0, r_0}} \land m_{r_{o_1, m_1, r_1}} \implies msep_{m_0, m_1}
\]

(6)
Separation boolean definitions

Occupation Separation boolean definition:

\[
\forall \ (o_0 \prec o_1) \ni \begin{align*}
[otLoLbC_{o_0},otHiUbC_{o_0}] \cap [otLoLbC_{o_1},otHiUbC_{o_1}] & \neq \emptyset
\end{align*}
\]

\[
o_0, o_1 \in O :
obe_{o_0,o_1} \equiv (otHiV_{o_0} + dt_s \leq otLoV_{o_1}) \tag{7}
\]

\[
o_{sep}_{o_0,o_1} \equiv (obe_{o_0,o_1} \lor obe_{o_1,o_0}).
\]

Movement separation boolean definition:

\[
\forall \ (m_0 \prec m_1) \ni \begin{align*}
[mtLoLbC_{m_0},mtHiUbC_{m_0}] \cap [mtLoLbC_{m_1},mtHiUbC_{m_1}] & \neq \emptyset
\end{align*}
\]

\[
m_0, m_1 \in M :
m_{bef}_{m_0,m_1} \equiv (mtHiV_{m_0} + dt_s \leq mtLoV_{m_1})
\]

\[
m_{sep}_{m_0,m_1} \equiv (m_{bef}_{m_0,m_1} \lor m_{bef}_{m_1,m_0}) \tag{8}
\]
User Interface Parameters

Figure: Leopard GUI and parameters
Table: Solver running times on a Xeon CPU E31240 Quad Core 3.3 GHz, comparing CPLEX v12.5.0.0 32 bit, XPRESS BCL v4.6.1 64 bit and Gurobi v5.6.3 64 bit

<table>
<thead>
<tr>
<th>Solver</th>
<th># Stations Optimally Solved in</th>
<th># Stations Suboptimally Solved in</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 1s</td>
<td>< 10s</td>
</tr>
<tr>
<td>CPLEX</td>
<td>526</td>
<td>8</td>
</tr>
<tr>
<td>XPRESS</td>
<td>528</td>
<td>5</td>
</tr>
<tr>
<td>Gurobi</td>
<td>533</td>
<td>3</td>
</tr>
</tbody>
</table>
Figure: Antwerp-Central original Assignment: 3 levels, some conflicts
Automatically and Quickly Planning Platform and Route of Trains in Railway Stations

Results

Antwerp-Central Optimised, Non-Periodic

Optimised Assignment, Non-Periodic

Figure: Antwerp-Central Opt. assignment, non-periodic: no conflicts, some unplaced trains
Automatically and Quickly Planning Platform and Route of Trains in Railway Stations

Results

Antwerp-Central Optimised, Periodic

Optimised Assignment, Periodic

Figure: Antwerp-Central Opt. assignment, periodic: no conflicts, some unplaced trains
Both Assignments, Non-Periodic

Figure: Antwerp-Central: comparing original and optimised assignments
Antwerp Station

Figure: Antwerp Station
Results

Ghent Sint-Pieters Original

Original Assignment

Figure: Ghent Sint-Pieters original Assignment: some conflicts
Figure: Ghent Sint-Pieters Opt. assignment, non-periodic: no conflicts, some unplaced trains
Both Assignments, Non-Periodic

Figure: Ghent Sint-Pieters: comparing original and optimised assignments
Comparing Original and Optimised Assignment KPIs

Results

Comparative Overview

<table>
<thead>
<tr>
<th>#platform</th>
<th>UnplatformedOrig</th>
<th>#OptLine</th>
<th>#darkOrq</th>
<th>#lightOrq</th>
<th>#greenLin</th>
<th>RobustnessScl</th>
<th>#platformed</th>
<th>#UnplatformedOpt</th>
<th>Opt.</th>
<th>#darkOrq</th>
<th>#lightOrq</th>
<th>#greenLin</th>
<th>RobustnessScl</th>
<th>Both.</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>0</td>
</tr>
<tr>
<td>87</td>
<td>0</td>
</tr>
<tr>
<td>36</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>0</td>
</tr>
</tbody>
</table>

Example Data

<table>
<thead>
<tr>
<th>#</th>
<th>#UnplatformedOrig</th>
<th>#OptLine</th>
<th>#darkOrq</th>
<th>#lightOrq</th>
<th>#greenLin</th>
<th>RobustnessScl</th>
<th>#platformed</th>
<th>#UnplatformedOpt</th>
<th>Opt.</th>
<th>#darkOrq</th>
<th>#lightOrq</th>
<th>#greenLin</th>
<th>RobustnessScl</th>
<th>Both.</th>
</tr>
</thead>
<tbody>
<tr>
<td>12894</td>
<td>4.75%</td>
<td>95.25%</td>
<td>% Unplatformed</td>
<td>% Performed</td>
<td>1.65%</td>
<td>98.34%</td>
<td>% Platformed</td>
<td>0</td>
<td>12894</td>
<td>4.75%</td>
<td>95.25%</td>
<td>% Unplatformed</td>
<td>% Performed</td>
<td>1.65%</td>
</tr>
</tbody>
</table>
TPP Research and Integration

<table>
<thead>
<tr>
<th>publication</th>
<th>company</th>
<th>in tool(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[De Luca Cardillo(1998)]</td>
<td>ProRail</td>
<td>STATIONS</td>
</tr>
<tr>
<td>[Delorme and Rodriguez(2001)]</td>
<td>SNCF</td>
<td>RECIFE</td>
</tr>
<tr>
<td>[Billionnet(2003)]</td>
<td>British Rail, UK</td>
<td></td>
</tr>
<tr>
<td>[Carey and Carville(2003)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Caprara et al.(2011)Caprara, Galli, and Toth]</td>
<td>RFI, IT</td>
<td></td>
</tr>
<tr>
<td>[Lusby et al.(2011)Lusby, Larsen, Ryan, and Ehrgott]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Sels et al.(2014)Sels, Dewilde, Cattrysse, and Vansteenwegen]</td>
<td>Infrabel</td>
<td>Ocap Leopard</td>
</tr>
</tbody>
</table>

Table: Comparing TPP Research & Integration
Conclusions & Future Work

- Conclusions
 - Leopard usable as check of current platform assignment
 - indicates all conflicts
 - indicates all robustness issues
 - Leopard usable as generator of correct platform assignment
 - guarantees no conflicts
 - can have robustness issues, indicates them
 - fast as a Leopard

- Further Work
 - roll-out with Infrabel planners
 - avoid robustness issues
 - weight trains per # passengers
 - allow some variability of platform times
 - allow multiple routes per line-platform combination
Questions

- Questions?
- sels.peter@gmail.com
- www.LogicallyYours.com/Research/
- www.LogicallyYours.com/Company/

